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Basic parton model inspiration: Case of Drell-Yan at qT � Q
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• qT(leptons) =
∑

kT(quarks)

• Use parton distribution in x and kT

• Same intuition applies to hadron distribution in jets, assisted by data, e.g.,

– e+e− → (jet1 + jet2 →) h1 + h2 +X,
– ep→ h+X,
– pp→ (jet1 + jet2 +X →) h1 + h2 +X with high pT jets and almost back-to-back

hadrons. (Warning: factorization failure in QCD.)

• But parton model needs to be substantially modified in QCD
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Summary

1. (TMD) factorization

2. Evolution equations à la CSS

3. Non-perturbative part

4. Consequences

5. Danger/opportunity areas
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TMD factorization for DY in QCD at qT � Q

dσ

d4q dΩ
' 2

s

∑
j

dσ̂j̄(Q,µ 7→ Q)

dΩ

∫
eiqT·bT f̃j/A(xA, bT;Q2, Q) f̃̄/B(xB, bT;Q2, Q) d2bT

for unpolarized p+ p→ (γ∗(q)→ µ+µ−) +X, with q = xAPA + xBPB + qT.

• Hard scattering dσ̂: perturbative

• TMD pdfs with 2 scale arguments . . .

• Extras:

– Can add in polarization terms (Sivers, Boer-Mulders)
– Need Y term (or . . . ) to combine with collinear factorization at larger qT
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Old v. new CSS

• Originally (CSS, 1982, 1985):

– Factorization into H × S × pdf× pdf. (H = “hard” factor; S = “soft” factor.)
– Reorganized for one process (mainly unpolarized DY) to combine S and H with pdfs,

effectively.
– Presented results in terms of parameterized “non-perturbative” functions, and parts

involving perturbative quantities

• New (JCC, 2011)

– Full proofs.
– Better definitions of TMD functions.
– With S incorporated into TMD functions
– Keep H separate, and process dependent.
– Emphasize presence of TMD functions (including all the spin-dependent ones).

[See JCC & Rogers (in preparation) for relationships.]
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Need for evolution from QCD

PB

PA

When s and Q2 are increased with xA and xB fixed:

• wider rapidity range for real and virtual emission

• wider kT range for real emission

Hence qT distribution broadens.

In TMD factorization, the effects are allowed for in properly defined TMD pdfs.

(Technical long story about Ward identities and Wilson lines!)
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Geography of evolution
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√
s = 38.8 GeV Q = mZ,

√
s = 1800 GeV

(Adapted from Landry et al., PRD 67,073016 (2003), Konychev & Nadolsky, PLB 633, 710 (2006))
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Evolution (CSS and RG)

Use definitions of TMD pdfs with effective cut offs on

– rapidity of unobserved real emission; parameter ζ = M2x2e2(yp−ycut−off)

– transverse momentum of virtual lines; parameter µ

Evolution on ζ:
∂ ln f̃f/H(x, bT; ζ;µ)

∂ ln
√
ζ

= K̃(bT;µ)

Combine with RG equations to get:

d ln f̃f/H(x, bT;Q2;Q)

d lnQ
= γ(αs(Q))−

∫ Q

Q0

dµ

µ
γK(αs(µ)) + K̃(bT;Q0),

= γ(αs(Q))−
∫ Q

µb

dµ

µ
γK(αs(µ)) + K̃(bT;µb),

Evolution kernel K̃(bT, µ) is strongly universal: independent of x, Q, flavor, type of TMD
function.

Non-perturbative information is in

– Ordinary pdfs (via small-bT OPE).
– Large bT TMD pdfs: “intrinsic transverse momentum”.
– K̃(bT, µ) at large bT
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Segregation of non-perturbative information à la CSS

For evolution

d ln f̃f/H(x, bT;Q2;Q)

d lnQ
= γ(αs(Q))−

∫ Q

µb

dµ

µ
γK(αs(µ)) + K̃(bT;µb)

= γ(αs(Q))−
∫ Q

µb∗

dµ

µ
γK(αs(µ))+K̃(b∗;µb∗)− gK(bT; bmax)

where smooth cutoff on perturbative part is b∗ = bT/
√

1 + b2T/b
2
max

Similarly for TMD functions at large bT, with e−gj/A(x,bT) factor.

Fits for gj/A and gK can also allow for incomplete perturbative information.
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Picturing segregation of non-perturbative information

For evolution

d ln f̃f/H(x, bT;Q2;Q)

d lnQ
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∫ Q
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µ
γK(αs(µ))+K̃(b∗;µb∗)− gK(bT; bmax)
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Solutions for TMD pdfs

With maximal perturbative information

f̃j/H(x, bT;Q2, Q) = exp

[
−gj/A(xA, bT; bmax)− gK(bT; bmax) ln

Q

Q0

]
× exp

{
K̃(b∗;µb∗) ln

Q

µb∗
+

∫ Q

µb∗

dµ′

µ′

[
γj(as(µ

′); 1)− ln
Q

µ′
γK(as(µ

′))

]}

×
∑
jA

∫ 1

xA

dξ

ξ
fjA/H(ξ;µb∗) C̃

PDF
j/jA

(
x

ξ
, b∗;µ

2
b∗
, µb∗, as(µb∗)

)
.

In terms of TMD function at Q0:

f̃j/H(x, bT;Q2, Q) = f̃j/H(x, bT;Q2
0, Q0)× exp

{∫ Q

Q0

dµ′

µ′

[
γj(as(µ

′); 1)− ln
Q

µ′
γK(as(µ

′))

]}

× exp

{
ln
Q

Q0

[
−gK(bT; bmax) + K̃(b∗;µb∗)−

∫ Q0

µb∗

dµ′

µ′
γK(as(µ

′))

]}

= func.(bT)× func.(Q)×
(
Q

Q0

)func.(bT)
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The meaning of K̃(bT)

bT-space DY:
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d ln f̃f/H(x, bT;Q2;Q)

d lnQ
= γ(αs(Q))−

∫ Q

Q0

dµ

µ
γK(αs(µ)) + K̃(b∗;Q0)
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What happens at large bT?

• With standard parameterizations, large bT asymptote of “bT cross section” and pdfs is

coeff.× e−b
2
T[coeff(x)+const ln(Q

2
/Q

2
0)]

• At low Q, we get exponent that is too small to agree with data or may even be
unphysical (negative).

• JCC & Rogers (PR D91, 074020 (2015)) proposed:

– Modify parameterization to give constant K̃ at large bT,
– while approximately preserving its form around 1.5 GeV−1 ∼ 0.3 fm, which dominates

fits to DY data

This gives slower evolution at the larger bT values that are important at lower Q.

• Sun, Isaacson, Yuan & Yuan, arXiv:1406.3073 made fits with K̃ ∝ ln bT at large bT.
They obtained good agreement with data:

– Fitted: Tevatron, fixed-target DY.
– Predicted: SIDIS at HERMES.
– But they neglected Y term!
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Danger/opportunity areas

• Need better formulation of “Y term”, with analysis of errors.

• TMD factorization failure in pp→ (jet1 + jet2 +X →) h1 + h2 +X etc: Understand
the physics better.

• Forward SSA, etc

• Have we correctly analyzed role of non-perturbative physics, especially in hadronization?

• Effects of heavy quarks.

• Generally, in reporting fits, it’s important to include

– actual TMD pdfs (and fragmentation functions)
– K̃(bT, Q)

as well as the CSS “non-perturbative” functions.
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